

Tetrahedron: Asymmetry 9 (1998) 2517-2532

Reactions of per-O-acetylglucosyl isothiocyanate with carbon bases. A new method for the stereocontrolled syntheses of nucleosides and glucosylaminothiophenes

José Fuentes,* José L. Molina and M. Angeles Pradera

Dpto de Química Orgánica, Facultad de Química, Universidad de Sevilla, Apartado 553, E-41071 Sevilla, Spain

Received 29 May 1998; accepted 16 June 1998

Abstract

Reaction of 2,3,4,6-tetra-O-acetyl- β -D-glucopyranosyl isothiocyanate 5 with diethyl malonate in a basic medium gave the corresponding glucopyranosyl thioamide without significant deacetylation. This thioamide in solution presents Z-anti as the sole configuration. Reactions of 5 with carbanions which have an ethoxycarbonyl group are a way to prepare anomerically pure N-nucleoside derivatives of pyrrole and tetrahydropyridine. Reactions of 5 with carbanions stabilized by one cyano group are used to prepare glucosylamino thiophenes with only the β -configuration. Some other stereochemical aspects of the prepared compounds are discussed. © 1998 Elsevier Science Ltd. All rights reserved.

1. Introduction

Sugar isothiocyanates are versatile starting materials in the syntheses of several types of glycoconjugates of biological interest.¹ Of the sugar isothiocyanates, the glycosyl ones are the most useful, which has prompted the development of both preparation procedures ¹⁻⁵ and synthetic applications. ^{1,6-9} At the same time, the nucleosides and aminothiophenes are interesting chemotherapeutic tools in the treatment of various infectious diseases, ¹⁰ which has originated an increasing demand for new compounds, and considerable effort is being directed towards the syntheses of nucleoside analogues. In the framework of a program aimed at the development of sugar isothiocyanate chemistry, in this paper we report on the reactions of 2,3,4,6-tetra-*O*-acetyl-β-D-glucopyranosyl isothiocyanate, ¹¹ as an example of easily available glycosyl isothiocyanate, and different carbon bases. We also explore the use of the corresponding adducts in the preparation of pyrrole and pyridine nucleoside derivatives and of glycosylaminothiophenes. Many reactions of sugar isothiocyanates with N-, O- and S-nucleophiles have been studied; ^{1,12} however, the data on reactions with carbon bases are very scarce and limited to enamines as nucleophiles. ^{7,12}

^{*} Corresponding author. E-mail: jfuentes@cica.es

Fig. 1. Conformational stereoisomers by rotation around the C1'-N bond of 6

2. Results and discussion

Commercially available diethyl malonate, ethyl cyanoacetate, phenylthioacetonitrile, cyanoacetamide and malonodinitrile, and the newly synthesized phenacyl and acetonyl derivatives of diethyl malonate 1–3 and of malonodinitrile 4 were used to generate carbanions to study their reactions with 2,3,4,6-tetra-O-acetyl- β -D-glucopyranosyl isothiocyanate 5. Compounds 1–4 were prepared by alkylation of diethyl malonate or malonodinitrile with the corresponding α -haloketone in the presence of sodium hydride under a nitrogen atmosphere. The structures 1–4 were supported by IR, 1 H- and 13 C-NMR, and mass spectroscopic data (see Experimental).

2.1. Reactions of the glucosyl isothiocyanate 5 with carbanions having two ester groups

Reaction of the isothiocyanate 5 with diethyl malonate in a basic medium produced the *N*-glucosylthioamide 6 (Fig. 1), whose analytical and spectroscopic (Table 1 and Experimental) data were in agreement with the proposed structure. The hydrogen bond between the NH and an ethoxycarbonyl group, shown in Fig. 1, was evident from the chemical shift of NH (9.55 ppm, close to that for other strongly chelated amino groups⁶), and from the existence of two different resonances in the ¹³C-NMR spectrum at 165 (CO chelated) and 164 ppm (CO free) for the ethoxycarbonyl groups.

The sugar amides and thioamides can exist in four configurational and conformational stereoisomers (Fig. 2), and because of the important biological role of many glycoconjugates with an amido function, such as glycopeptides, glycolipids, calicheamicins, 13 and istamycins, 14 it is very interesting to know the exact stereochemistry of any amidosugar. This can be a way to rationalize the role of these compounds in molecular recognition or enzyme inhibition phenomena. The aforementioned equilibrium has been evaluated for several types of amidosugar derivative 15 and the *Z-anti* as sole conformer or mixtures of *Z-anti* and *Z-syn* conformers have been described as predominant stereoisomers. The recent observation 16 that the value (9–11 Hz) for the $^3J_{\rm H,H}$ between the NH and the vicinal CH sugar proton (H-1 or H-2) is compatible with both the antiperiplanar and synperiplanar arrangements of NH and CH has demonstrated

Table 1
Selected NMR data (δ , ppm; J , Hz) for compounds 6-14, 18-22, and 25,26 in CDCl ₃

Comp.	$\delta_{_{\mathrm{NH}}}$	δ_{H-1}	$J_{\rm I',NH}$	$J_{1',2'}$	δ_{c-1}	$\delta_{\text{C=S}}$
6	9.55d	5.75dd	8.1	9.5	81.7	193.7
7	11.21d	5.83t	8.2	8.2	81.9	196.5
8	11.15d	5.82t	8.2	8.2	81.9	195.4
9	10.80d	5.78dd	7.7	9.5	81.9	196.5
10°	-	6.46d	-	9.6	81.3	193.8
	_	6.40bd	-	9.6	81.2	193.7
11	-	4.77d	-	8.6	92.0	166.3
12 ^b	-	4.77d	-	8.4	91.3	164.7
13	-	6.60d	•	9.6	83.1	196.7
14ª	-	4.88d	-	8.7	89.2	165.4
	-	4.71d	-	8.7	90.5	166.7
18	10.32d	5.59dd	7.8	9.4	82.8	-
19	7.10d	5.42dd	8.3	9.4	83.3	-
20	6.54d	4.65t	9.5	9.5	84.9	-
21	8.66d	4.66t	9.5	9.5	84.5	-
22	6.77d	4.77t	9.5	9.5	84.4	-
25	-	4.88d	-	9.5	89.2	-
26	+	4.71d	-	9.5	90.5	-

"As a pair of diastereomers. At room temperature. In (CD₃)₂SO.

a possible controversy in the published results, and new experiments have been carried out on both 2-amido-2-deoxy sugars 16 and glycosylamides. 17 In the case of the thioamido derivative 6, the presence of a sole stereoisomer was evident from the 1 H- and 13 C-NMR spectra which showed only one signal set. The above-discussed hydrogen bond is compatible with the *Z-anti* 6a and *Z-syn* 6b stereoisomers (Fig. 1) and rules out the *E-anti* and *E-syn* configurations. To distinguish between 6a and 6b the indicated NOE experiments were carried out. From these, the 1,3-syn-axial disposition between NH and C2'-H was evident, and consequently the *Z-anti* stereoisomer is the only possible one.

Treatment of the glucosyl isothiocyanate 5 with the diethyl phenacyl (acetonyl) malonates 1-3 and sodium hydride gave the glucosyl thioamide derivatives 7-9 respectively. The NMR spectra of compounds 7 and 8 had single sets of signals, the data being very close to those for 6, and supporting the same structure and stereochemistry. In these two cases, the chemical shift for the NH resonance was ≈ 11.2 ppm, corroborating the presence of a strong hydrogen bond. Compounds 7 and 8 were stable in solution in chloroform even after 10 days, and no formation of cyclic structures in the aglycon moiety were observed. This is probably due to the conjugation between the carbonyl and phenyl groups of the phenacyl radical. In the case of the reaction 5+3, the ¹H-NMR data of the final product demonstrated the structure 9; however the ¹H- and ¹³C-NMR spectra showed the existence of an equilibrium between 9 and the two (5R,5S) hemiaminalic structures 10. The ratio of 9:10 at room temperature was 1.1:10 and did not change over time. The two diastereomers 10 were in a 1:1 ratio, which is consistent with the nonstereogenic character of C-2 and C-3 in the aglycon moiety of 9. With increasing temperature, the proportion of 9 in the equilibrium increased, the ratio of 9:10 reaching 1:4 at 50°C. Selected spectroscopic data of 10 are included in Table 1.

$$\begin{array}{c|c}
 & H \\
 & N-CX \\
 & H \\
 & R \\
 & R$$

Fig. 2. Stereochemical equilibrium for the amide moiety of sugar amides (X=O) and thioamides (X=S)

Cyclodehydration of 7 and 8 with acetic anhydride and phosphoric acid gave the *N*-nucleoside derivatives of pyrroline-5-thione 11 and 12. The resonance of the C=S group of 11 and 12 appeared at \approx 165 ppm, a value very different to that for the starting materials, and close to that reported for related azolinethiones. The ¹³C resonances at \approx 141 (C-2) and 116 (C-3) ppm and the ¹H resonance at 6.22 ppm supported the presence of the double bond in the aglycon moiety.

When the same treatment with acetic anhydride and phosphoric acid was carried out on 9, the N-glucosyl pyridine derivative 13 was obtained in 65% yield after purification. The ¹H- and ¹³C-NMR spectra of 13 showed a sole signal set, and no signals attributable to the other diasteromeric structure were observed. In contrast to 11 and 12, the C=S group of 13 resonated at 196.7 ppm; the signals for the C=CH group appeared at 152.9 (C-5), 105.1 (C-6) and 6.49 (=CH) ppm. This latter resonance was a double doublet showing allylic couplings (2.2 and 1.7 Hz) with the protons on C-4. The resonance of the ketone C=O was observed at 199.6 and there was no signal for NH. A possible mechanism to explain the formation of the N-nucleoside analogue 13 is depicted in Scheme 1. The enolic form 9b,

which can be acetylated, undergoes internal addition, followed by dehydration (if acetylated elimination of AcOH) to give 14. This intermediate is an enamine analogue with strong nucleophilic character at the β -carbon (C-5). Consequently it can react at this position with an acetyl cation to give 13, after loss of a proton. A possible structure 16 for the intermediate was considered, but the spectroscopic data and the existence of only one stereoisomer for 13 ruled out this formula. Related six-membered cyclizations of γ -oxothioureas have been described.

Scheme 1. Possible mechanism for the formation of 13

2.2. Reactions of the isothiocyanate 5 with carbanions having one cyano group

When the carbanion from ethyl cyanoacetate reacted with the glucosyl isothiocyanate 5, a non-isolatable salt (17) was formed (Scheme 2); which by reaction with phenacyl bromide gave the S-phenacyl derivative 18 in high yield, and no cyclization to a thiophene derivative was observed. The phenacyl group of 18 was evident from the IR band at 1684 cm⁻¹ (C=O) and from the ¹H resonances at 4.96 and 4.63 ppm (AB system for CH₂, J_{AB} 17.1 Hz) and ¹³C resonances at 191.8 (C=O) and 42.7 ppm (CH₂).²⁰ The cyano group resonated at 117.3 ppm and its IR C=N bond appeared at 2212 cm⁻¹; there were no signals for a C=S group. The chemical shift for the resonance of the NH (10.32 ppm) demonstrated a strong hydrogen bond between this proton and the carbonyl of the ester group. The existence of this H-bond supported the E configuration assigned to the C=C double bond.

In the case of the reaction of 5 with phenylthioacetonitrile, and afterwards with phenacyl chloride, the S-phenacyl derivative 19 and the glucosylamino thiophene 20 were obtained after chromatography. The structural data of 19 closely resembled those of 18 (see Table 1 and Experimental), except the resonance for NH, which appeared at 7.10 ppm and corresponds to a weakly chelated amino proton. This fact is indicative of Z configuration of the C=C double bond, with a hydrogen bond between the cis NH and C=N groups. Dilution studies confirmed the intramolecular chelated structure. Compound 20 (see structure discussion together with 21 and 22) with a thiophene structure arises from the nucleophilic addition of the methylene of the phenacyl group onto the cyano group of the E stereoisomer of 19.

When cyanoacetamide and malonodinitrile were used to generate the carbanions, the glucosylaminothiophenes 21 and 22 were isolated. The IR spectra of 20-22 revealed the presence of the NH₂ stretching

Scheme 2. Reaction of compound 5 with cyanoderivatives

band at 3424–3322 cm⁻¹ and, in the case of 22, a C≡N absorption at 2212 cm⁻¹. The ¹H-NMR spectra showed broad signals for the NH₂ groups and a doublet for the NH at 6.54 ppm for 20 (nonchelated structure), 8.66 ppm for 21 (hydrogen bond between NH and CO groups) and 6.77 ppm (weak hydrogen bond between NH and C≡N). In contrast with what happened with 18 and 19, in the three cases 20–22, the H-1 of the sugar ring resonated at higher field than H-2, H-3 and H-4. No signals for a C=S group were observed.

Some reactions between benzoyl isothiocyanate and methylene active reagents have been studied²¹ and a structure related to 17 has been proposed as an intermediate.

The reaction of 5 with a dicyano derivative has also been studied. Thus, when 5 was added on the carbanion proceeding from phenacylmalonodinitrile 4, and the resulting salt 23 was S-alkylated with phenacyl bromide, the diasteromeric mixture (C-3 epimers) of glucosyliminothiophenes 25 and 26 was obtained. This mixture could be resolved chromatographically, and 25 (major) and 26 (minor) were isolated as pure products, although the configuration of C-3 could not be assigned. Compounds 25 and 26 are formed (Scheme 3) by nucleophilic addition of the methylene of the S-alkyl group of 24 on each one of the cyano groups. The 1 H-NMR spectra (Table 1 and Experimental) of 25 and 26 had no signals for NH, and H-1 of the sugar ring resonated as a doublet. The chemical shifts for the resonances of C-1 of the sugar ring and C=N (C-2 of the thiophene ring) were close to those described for related glucosylimino derivatives. The resonances for the C-CH₂ group appeared at \approx 42.5 ppm and the chemical shifts for the resonances of the NH₂ were \approx 8.4 ppm, a value at a remarkably lower field than those for the same protons in 20-22; this suggests a possible seven-membered ring hydrogen bond with the carbonyl of phenacyl group.

As with other aldimines, 22 the glucosylimines 25 and 26 probably prefer the conformation indicated in the Scheme 3, because this is stabilized by a $\pi \rightarrow \sigma^*$ delocalization of the π electrons of the C=N bond in the σ^* orbital of the C1-O bond in the pyranosyl ring.

Conventional deacetylation of compounds 6, 11, 12, 18 and 22 gave the glucosyl thioamide 27, the *N*-nucleosides 28 and 29, and the glucosylaminothiophenes 30–31. The deacetylation of the phenylthio- and

Scheme 3. Reaction of compound 5 with phenacyl malonodinitrile

carbamoylderivatives 19–21 was also tried but in these three cases decomposition took place, and it was not possible to isolate the corresponding deacetylated derivative. Compounds 27–31 were characterized by their NMR data (see Experimental). Compound 27 showed a strongly chelated structure (δ_{NH} 10.6 ppm). During the treatment with sodium methoxide of the N-nucleosides 11 and 12, saponification of an ethoxycarbonyl group and then decarboxylation took place, and in this way 28 and 29 had only one ethoxycarbonyl group. Compound 29 was isolated whereas 28 was only spectroscopically detected. In the case of compound 18, under deacylation conditions, the cyclization took place and the aminothiophene derivative 30, with the same structure as 31, was obtained.

In conclusion, a glycosyl isothiocyanate, the 2,3,4,6-tetra-O-acetyl-β-D-glucopyranosyl isothiocyanate 5, can react with methylene active compounds, in a basic medium, without significant deacylation. These reactions open ways to prepare glycosylthioamides, nucleoside analogues of different heterocycles, and glycosylamino heterocycles. In all cases, the anomeric configuration is fixed by the C-1' configuration of the glucosyl isothiocyanate. In cases of the glucosylamino derivatives, the anomerization described for other free and O-protected glycosyl amines did not take place. ^{23,24}

3. Experimental

3.1. General

Melting points are uncorrected. Optical rotations were measured for solutions in dichloromethane. FTIR spectra were recorded for KBr discs or thin films. ¹H-NMR (500 and 300 MHz) and ¹³C-NMR (125.7 and 75.4 MHz) spectra were obtained for solutions in CDCl₃, (CD₃)₂SO or MeOH-d₄. Assignments were confirmed by homonuclear 2D COSY and heteronuclear 2D correlated experiments. FAB-mass spectra were recorded with a Kratos MS-80RFA instrument with a resolution of 1000 (10% valley definition). Ions were produced by a beam of xenon atoms (6–7 kV) using a matrix consisting of thioglycerol or 3-nitrobenzyl alcohol and NaI as salt. HREIMS (70 eV), HRCIMS (150 eV) and HRDCIMS (150 eV) experiments were performed with a Micromass AutoSpecQ instrument with a resolution of 10000 (5% valley definition). Isobutane was used as the reactive gas (500 mA, 8 kV). TLC was performed on silica gel HF₂₅₄, with detection by UV light or charring with H₂SO₄. Silica gel 60 (Merck, 230–400 mesh) was used for preparative chromatography.

3.2. General procedure for the preparation of 1-4

To a stirred solution of diethyl malonate (6.59 mmol) for 1–3 or malononitrile for 4 (6.59 mmol) in ν mL of dry DMF over molecular sieves and under nitrogen, 9.88 mmol of NaH (as a suspension in mineral oil) are added. After 5 min, the corresponding α -haloketone (6.59 mmol) was added dropwise as a solution in 1.5 mL of dry DMF over molecular sieves and under nitrogen (for 1–3) or added directly as a solid (in the case of 4) onto the carbanion. The corresponding mixture was stirred at 30°C for 30 min, then diluted with ether (for 1–3) or dichloromethane (for 4), washed with water, dried (MgSO₄), filtered and evaporated to dryness.

3.2.1. Diethyl phenacylmalonate 1

 ν =1 mL. Column chromatography (ether:hexane=1:4) of the residue gave an oil (1.08 g, 59%); IR ν max 3063, 2984, 2934, 1732, 1690, 1451, 1368, 1267, 1155 and 1031 cm⁻¹; ¹H-NMR (500 MHz, CDCl₃): δ 8.01–7.27 (m, 5H, Ph), 4.29–4.20 (m, 2H, CH₂CH₃), 4.06 (t, 1H, J_{HC,CH₂}=7.1, HC), 3.64 (d, 2H, CH₂COPh), 1.30 (t, 6H, 3J _{H,H}=7.1, 2CH₂CH₃) ppm; 13 C-NMR (125.7 MHz, CDCl₃): δ 196.5 (COPh), 169.0 (2C, 2CO₂Et), 136.4–128.1 (6C, Ph), 61.7 (2C, 2CH₂CH₃), 47.1 (HC), 37.7 (CH₂COPh), 13.9 (2C, 2CH₂CH₃) ppm; HREIMS m/z obsd 278.1152, calcd for C₁₅H₁₈O₅ 278.1154.

3.2.2. Diethyl p-chlorophenacylmalonate 2

 ν =2 mL. Column chromatography (ether:hexane=1:4) of the residue gave an oil (1.65 g, 80%); IR ν _{max} 3094, 2984, 2936, 1738, 1690, 1454, 1368, 1275, 1179 and 1032 cm⁻¹; ¹H-NMR (300 MHz, CDCl₃): δ 7.96–7.42 (m, 4H, Ph), 4.27, 4.26 (each q, each 2H, $^3J_{H,H}$ =7.1, 2C H_2 CH₃), 4.07 (t, 1H, J_{HC,CH_2} =7.1,

HC), 3.61 (d, 2H, C H_2 COPh), 1.31 (t, 6H, 2C H_2 C H_3) ppm; ¹³C-NMR (75.4 MHz, CDCl₃): δ 195.3 (COPh), 168.8 (2C, 2CO₂Et), 140.3–128.9 (6C, Ph), 61.7 (2C, 2C H_2 CH₃), 47.0 (HC), 36.7 (C H_2 COPh), 13.9 (2C, 2C H_2 CH₃) ppm; HREIMS m/z obsd 312.0780, calcd for C₁₅H₁₇O₅Cl 312.0765.

3.2.3. Diethyl acetonylmalonate 3

 ν =1 mL. Column chromatography (ether:hexane=1:4) of the residue gave an oil (0.60 g, 42%); IR ν_{max} 2986, 2940, 1738, 1458, 1366, 1271, 1159 and 1024 cm⁻¹; ¹H-NMR (300 MHz, CDCl₃): δ 4.20 (q, 4H, ³ $J_{H,H}$ =7.1, 2C H_2 CCH₃), 3.85 (t, 1H, J_{HC,CH_2} =7.1, HC), 3.06 (d, 2H, C H_2 COCH₃), 2.21 (s, 3H, CH₂COC H_3), 1.27 (t, 6H, 2CH₂CH₃) ppm; ¹³C-NMR (75.4 MHz, CDCl₃): δ 204.8 (COCH₃), 168.7 (2C, 2CO₂Et), 61.6 (2C, 2CH₂CH₃), 46.8 (HC), 41.9 (CH₂COPh), 29.6 (COCH₃), 13.9 (2C, 2CH₂CH₃) ppm; HREIMS m/z obsd 216.1004, calcd for C₁₀H₁₆O₅ 216.0998.

3.2.4. Phenacyl malonodinitrile 4

 ν =2 mL. Column chromatography (dichloromethane) of the residue gave a white solid (0.79 g, 65%) which gradually becomes brown at room temperature. This brown impurity could be removed by further column chromatography (ether:hexane=1:1); IR ν_{max} 3054, 2907, 1732, 2255, 1682, 1589, 1447, 1358 and 1217 cm⁻¹; ¹H-NMR (300 MHz, CDCl₃): δ 8.03–7.56 (m, 5H, Ph), 4.48 (t, 1H, J_{HC,CH_2} =6.8, HC), 3.84 (d, 2H, CH₂) ppm; ¹³C-NMR (75.4 MHz, CDCl₃): δ 192.2 (COPh), 134.7–128.0 (6C, Ph), 112.3 (2C, 2CN), 39.4 (CH₂COPh), 17.6 (HC) ppm; HREIMS m/z obsd 184.0635, calcd for C₁₁H₈ON₂ 184.0637.

3.3. Diethyl 2,3,4,6-tetra-O-acetyl-\(\beta\)-D-glucopyranosyl-aminothiocarbonyl malonate \(\beta\)

To a stirred solution of 5^{11} (0.50 mg, 1.28 mmol) in dry DMF (4 mL) under argon at 40° C, diethyl malonate (0.19 mL, 1.28 mmol) and KOH (1.28 mmol) were added. The mixture was stirred for 1 h at 40° C, then diluted with dichloromethane, washed with water, dried (MgSO₄), filtered and evaporated to dryness. The resulting product was purified by recrystallization (ether:hexane). **6** was obtained as a crystalline solid (0.43 mg, 61%) which had mp $101-102^{\circ}$ C (ether:hexane); [α] +52 (c 1.0); IR ν_{max} 3308, 2982, 2942, 1750, 1537, 1420, 1370, 1225 and 1040 cm⁻¹; ¹H-NMR (500 MHz, CDCl₃): δ 9.55 (d, 1H, $J_{\text{NH},1}$ =8.1, NH), 5.75 (dd, 1H, $J_{1,2}$ =9.5, H-1), 5.35 (t, 1H, $J_{2,3}$ = $J_{3,4}$ =9.5, H-3), 5.21 (t, 1H, H-2), 5.12 (t, 1H, $J_{4,5}$ =9.5, H-4), 4.97 (s, 1H, CH), 4.31–4.21 (m, 5H, H-6a and 2C H_2 CH₃), 4.11 (dd, 1H, $J_{5,6b}$ =2.1, $J_{6a,6b}$ =12.5, H-6b), 3.86 (ddd, 1H, $J_{5,6a}$ =4.5, H-5), 2.09, 2.08, 2.04, 2.03 (each s, each 3H, 4Ac), 1.31, 1.28 (each t, each 3H, ${}^3J_{\text{H,H}}$ =7.1, 2C H_2 C H_3) ppm; 13 C-NMR (125.7 MHz, CDCl₃): δ 193.7 (C=S), 170.5, 170.4, 169.7, 169.3 (4COCH₃), 165.0, 164.0 (2CO₂Et), 81.7 (C-1), 73.7 (C-5), 72.4 (C-3), 69.8 (C-2), 68.0 (C-4), 66.2 (CH), 62.8, 62.7 (2C H_2 C H_3), 61.4 (C-6), 20.5, 20.2 (2COC H_3), 20.4 (2C, 2COC H_3), 13.8 and 13.6 (2C H_2 C H_3) ppm; FABMS m/z 572 (100, [M+Na]⁺⁺). Anal. calcd for C₂₂H₃₁O₁₃NS: C, 48.08; H, 5.69; N, 2.55; S, 5.83. Found: C, 47.94; H, 5.60; N, 2.66; S, 5.66.

3.4. General procedure for the preparation of 7-10

To a stirred solution of 0.26 mmol 1 for 7, 2 for 8, or 3 for 9 and 10 in v mL of dry DMF over molecular sieves and under nitrogen, 0.31 mmol of NaH (as a suspension in mineral oil) was added. After 5 min, 0.26 mmol of 2,3,4,6-tetra-O-acetyl-β-D-glucopyranosyl isothiocyanate 5 was added dropwise as a solution in 0.75 mL of dry DMF over molecular sieves and under nitrogen onto the carbanion. The mixture was stirred at 30°C for t min, then diluted with ether, washed with water, dried (MgSO₄), filtered and evaporated to dryness.

3.4.1. N-(2',3',4',6'-Tetra-O-acetyl- β -D-glucopyranosyl)-2,2-diethoxycarbonyl-4-phenyl-4-oxothiobutanamide 7

Column chromatography (ether:hexane=1:1 and 3:1) of the residue gave a white amorphous solid (69 mg, 40%) which had [α] +39 (c 1.0); IR ν_{max} 3214, 3030, 2980, 2942, 1751, 1688, 1537, 1452, 1370, 1225 and 1042 cm⁻¹; ¹H-NMR (300 MHz, CDCl₃): δ 11.21 (d, 1H, $J_{NH,1'}$ =8.2, NH), 7.98–7.27 (m, 5H, Ph), 5.83 (t, 1H, $J_{1',2'}$ =8.2, H-1'), 5.37–5.30 (m, 2H, H-2', 3'), 5.15 (m, 1H, H-4'), 4.70 (d, 1H, $J_{3a,3b}$ =18.6, C-3a), 4.33–4.20 (m, 5H, H-6'a and 2C H_2 CH₃), 4.29 (d, 1H, C-3b), 4.09 (dd, 1H, $J_{5',6'b}$ =2.3, $J_{6'a,6'b}$ =12.4, H-6'b), 3.83 (ddd, 1H, $J_{4,5}$ =10.0, $J_{5',6'a}$ =4.6, H-5), 2.09, 2.06 (each s, each 3H, 2Ac), 2.03 (s, 6H, 2Ac), 1.22, 1.19 (each t, each 3H, $^3J_{H,H}$ =7.1, 2C H_2 C H_3) ppm; 13 C-NMR (75.4 MHz, CDCl₃): δ 199.9 (C-4), 196.5 (C-1), 170.6, 170.0, 169.9, 169.4 (4COCH₃), 168.0, 166.2 (2CO₂Et), 135.9–128.1 (6C, Ph), 81.9 (C-1'), 73.9 (C-5'), 73.0, 69.9 (C-2', 3'), 68.3 (C-4'), 65.4 (C-2), 63.0, 62.9 (2C H_2 C H_3), 61.6 (C-6'), 47.1 (C-3), 20.6, 20.4 (2COC H_3), 20.5 (2C, 2COC H_3), 13.6, 13.5 (2C H_2 C H_3) ppm; FABMS m/z 690 (100, [M+Na]⁺⁺). Anal. calcd for C₃₀H₃₇O₁₄NS: C, 53.97; H, 5.59; N, 2.10; S, 4.80. Found: C, 53.97; H, 5.51; N, 2.21; S, 5.18.

3.4.2. N-(2',3',4',6'-Tetra-O-acetyl- β -D-glucopyranosyl)-4-(4-chlorophenyl)-2,2-diethoxycarbonyl-4-oxo-2-thiobutanamide 8

Column chromatography (ether:hexane=1:1 and 3:1) of the residue gave a white amorphous solid (108 mg, 59%) which had [α] +45 (c 1.0); IR ν_{max} 3206, 3041, 2984, 2942, 1755, 1684, 1539, 1368, 1225 and 1038 cm⁻¹; ¹H-NMR (300 MHz, CDCl₃): δ 11.15 (d, 1H, $J_{NH,1'}$ =8.2, NH), 7.93–7.40 (m, 4H, Ar), 5.82 (t, 1H, $J_{1',2'}$ =8.2, H-1'), 5.37–5.27 (m, 2H, H-2', 3'), 5.15 (t, 1H, $J_{3',4'}$ = $J_{4',5'}$ =10.0, H-4'), 4.66, 4.25 (each d, each 1H, $J_{3a,3b}$ =18.6, H-3a, 3b), 4.24 (dd, 1H, $J_{5',6'a}$ =4.6, $J_{6'a,6'b}$ =12.4, H-6'a), 4.24 (q, 4H, $^3J_{H,H}$ =7.1, 2C H_2 CH₃), 4.09 (dd, 1H, $J_{5',6'b}$ =2.3, H-6'b), 3.83 (ddd, 1H, H-5'), 2.09, 2.07 (each s, each 3H, 2Ac), 2.04 (s, 6H, 2Ac), 1.23, 1.20 (each t, each 3H, 2CH₂CH₃) ppm; 13 C-NMR (75.4 MHz, CDCl₃): δ 199.6 (C-4), 195.4 (C-1), 170.5, 169.4 (2COCH₃), 169.9 (2C, 2COCH₃), 167.8, 166.0 (2CO₂Et), 140.0–128.9 (6C, Ar), 81.9 (C-1'), 73.8 (C-5'), 72.9, 70.4 (C-2', 3'), 68.2 (C-4'), 65.3 (C-2), 63.0, 62.9 (2CH₂CH₃), 61.6 (C-6'), 46.9 (C-3), 20.6, 20.4 (2COCH₃), 20.5 (2C, 2COCH₃), 13.5 and 13.4 (2CH₂CH₃) ppm; FABMS m/z 724 (100, [M+Na]⁺⁺). Anal. calcd for C₃₀H₃₆O₁₄NSCl: C, 51.32; H, 5.17; N, 1.99; S, 4.57. Found: C, 51.21; H, 4.99; N, 2.05; S, 4.58.

3.4.3. N-(2',3',4',6'-Tetra-O-acetyl- β -D-glucopyranosyl)-2,2-diethoxycarbonyl-4-oxothiopentanamide (9) and 2(R,S)-4,4-diethoxycarbonyl-2-hydroxy-2-methyl-1-(2',3',4',6'-tetra-O-acetyl- β -D-glucopyranosyl)-5-thioxopyrrolidine 10

Column chromatography (ether:hexane=3:1) of the residue gave a white amorphous solid 9+10 (58 mg, 37%).

Compound 9: ¹H-NMR (500 MHz, CDCl₃): δ 10.80 (d, 1H, $J_{NH,1'}$ =7.7, NH), 5.78 (dd, 1H, $J_{1',2'}$ =9.5, H-1'), 5.39 (t, 1H, $J_{2',3'}$ = $J_{3',4'}$ =9.5, H-3'), 5.24 (t, 1H, H-2'), 5.12 (t, 1H, $J_{4',5'}$ =9.5, H-4'), 4.30–4.18 (m, 4H, H-6'a, 6'b and CH₂CH₃), 3.86–3.83 (m, 1H, H-5'), 2.95–2.75 (m, 2H, H-3a, 3b), 2.09, 2.06, 2.02, 1.92 (each s, each 3H, 4Ac), 1.73 (s, 1H, CH₃COCH₂), 1.26 (t, 6H, $^3J_{H,H}$ =7.1, 2CH₂CH₃) ppm.

Compound 10: ¹H-NMR (500 MHz, CDCl₃): δ 6.38 (d, 1H, $J_{1',2'}$ =9.5, H-1'), 5.35, 5.33 (each t, each 1H, $J_{2',3'}$ = $J_{3',4'}$ =9.5, H-2', 3'), 5.15 (t, 1H, $J_{4',5'}$ =9.5, H-4'), 4.30–4.18 (m, 4H, H-6'a, 6'b and C H_2 CH₃), 3.81 (dt, 1H, $J_{5',6'a}$ = $J_{5',6'b}$ =3.3, H-5'), 2.81–2.76 (m, 2H, H-3a, 3b), 2.07, 2.04, 2.01, 1.98 (each s, each 3H, 4Ac), 1.62 (s, 1H, C H_3 COCH₂), 1.29 (t, 6H, $^3J_{H,H}$ =7.1, 2CH₂C H_3) ppm; 13 C-NMR (125.7 MHz, CDCl₃) δ 199.7, 195.8 (2CS), 171.9–166.0 (12C, 4CO₂Et and 8COCH₃), 84.2, 83.7 (2C-1'), 75.6, 74.9 (2C-5'), 73.0, 71.9 (2C-2'), 72.3, 70.4 (2C-3'), 67.9, 67.6 (2C-4'), 96.7, 95.2 (2C-2), 70.9, 70.2 (2C-4), 63.0–60.9 (2C-6' and 4CH₂CH₃), 46.7, 44.9 (2C-3), 27.3, 25.0 (2CH₃), 20.7–20.2 (8C, 8COCH₃), 13.8,

13.7 (4C, 4CH₂CH₃) ppm; FABMS m/z 628 (100, [M+Na]⁺⁺). HRFABMS m/z obsd 628.1665, calcd for C₂₅H₃₅O₁₄NSNa 628.1676. Anal. calcd for C₂₅H₃₅O₁₄NS: C, 49.58; H, 5.83; N, 2.31; S, 5.29. Found: C, 48.91; H, 5.47; N, 2.45; S, 5.25.

3.5. General procedure for the preparation of 11–13

The starting material (7 for 11, 8 for 12 or 9 for 13, 0.34 mmol) was dissolved in 3.4 mL of acetic anhydride and 0.17 mL of melted anhydrous H_3PO_4 . The mixture was stirred at r.t. for t hours and then poured into ice—water, extracted with ether, washed with saturated aqueous NaHCO₃ and water, dried (MgSO₄) and concentrated. The residue was taken up in 96% ethanol and treated with basic resin Amberlist IR-45(OH), filtered and evaporated. The residue was purified by column chromatography (ether:hexane=3:1).

3.5.1. 4,4-Diethoxycarbonyl-2-phenyl-1-(2',3',4',6'-tetra-O-acetyl- β -D-glucopyranosyl)-5-thioxo-2-pyrroline II

White and amorphous solid (168 mg, 76%); t=12 h; $[\alpha]-7$ (c 0.9); IR v_{max} 3067, 2980, 1750, 1653, 1447, 1371, 1225 and 1040 cm⁻¹; ¹H-NMR (500 MHz, CDCl₃): δ 7.52–7.39 (m, 5H, Ph), 6.22 (s, 1H, H-3), 5.32 (t, 1H, $J_{2',3'}=J_{3',4'}=8.9$, H-3'), 5.23 (dd, 1H, $J_{1',2'}=8.6$, H-2'), 5.20 (t, 1H, $J_{4',5'}=8.9$, H-4'), 4.77 (d, 1H, H-1'), 4.32–4.24 (m, 5H, H-6'a and 2C H_2 CH₃), 4.20 (dd, 1H, $J_{5',6'}=2.2$, $J_{6'a,6'}=12.3$, H-6'b), 3.86 (ddd, 1H, $J_{5',6'}=2.1$, H-5'), 2.09, 2.05, 2.01, 1.97 (each s, each 3H, 4Ac), 1.29, 1.28 (each t, each 3H, $^3J_{H,H}=7.0$, 2C H_2 C H_3) ppm; 13 C-NMR (125.7 MHz, CDCl₃): δ 170.7, 170.3, 169.3, 168.9 (4COCH₃), 166.3 (C-5), 165.3, 165.2 (2CO₂Et), 142.4 (C-2), 132.1–126.4 (6C, Ph), 115.0 (C-3), 92.0 (C-1'), 76.9 (C-4), 73.7 (C-5'), 73.5 (C-3'), 71.4 (C-2'), 68.4 (C-4'), 62.9, 62.8 (2C H_2 C H_3), 62.1 (C-6'), 20.7 (COC H_3), 20.5 (3C, 3COC H_3), 13.9 and 13.8 (2C H_2 C H_3) ppm; FABMS m/z 672 (100, [M+Na]+'). Anal. calcd for C₃₀H₃₅O₁₃NS: C, 55.46; H, 5.43; N, 2.16; S, 4.94. Found: C, 55.43; H, 5.20; N, 2.17; S, 5.08.

3.5.2. 2-(4-Chlorophenyl)-4,4-diethoxycarbonyl-1-(2',3',4',6'-tetra-O-acetyl- β -D-glucopyranosyl)-5-thioxo-2-pyrroline 12

White and amorphous solid (156 mg, 67%); t=10 h; $\{\alpha\}$ +54 (c 0.7); IR ν_{max} 3075, 2980, 1753, 1655, 1437, 1371, 1225 and 1040 cm⁻¹; ¹H-NMR (300 MHz, CDCl₃): δ 7.42–7.40 (m, 4H, Ar), 6.22 (s, 1H, H-3), 5.32 (t, 1H, $J_{2',3'}=J_{3',4'}=9.3$, H-3'), 5.22 (dd, 1H, $J_{1',2'}=8.4$, H-2'), 5.19 (t, 1H, $J_{4',5'}=9.3$, H-4'), 4.77 (d, 1H, H-1'), 4.32–4.24 (m, 4H, H-6'a), 4.29 (q, 4H, $^3J_{H,H}=7.1$, 2CH₂CH₃), 4.20 (dd, 1H, $J_{5',6'}=2.4$, $J_{6'a,6'b}=12.4$, H-6'b), 3.86 (ddd, 1H, $J_{5',6'a}=4.6$, H-5'), 2.09, 2.05, 2.01, 1.97 (each s, each 3H, 4Ac), 1.29, 1.28 (each t, each 3H, 2CH₂CH₃) ppm; 13 C-NMR (125.7 MHz, DMSO- 4 6): δ 170.0, 169.6, 169.3, 168.6 (4COCH₃), 164.8, 164.8 (2CO₂Et), 164.7 (C-5), 140.3 (C-2), 134.5–128.1 (6C, Ar), 116.4 (C-3), 91.3 (C-1'), 76.7 (C-4), 72.5 (C-5'), 72.3 (C-3'), 71.2 (C-2'), 68.0 (C-4'), 62.5, 62.4 (2CH₂CH₃), 61.8 (C-6'), 20.5, 20.4 (2COCH₃), 20.3 (2C, 2COCH₃), 13.7, 13.6 (2CH₂CH₃) ppm; FABMS m/z 706 (100, [M+Na]+*). Anal. calcd for C₃₀H₃₄O₁₃NSCl: C, 52.67; H, 5.01; N, 2.05; S, 4.69. Found: C, 52.49; H, 4.94; N, 2.40; S, 4.59.

3.5.3. 5-Acetyl-3,3-diethoxycarbonyl-1,2,3,4-tetrahydro-1-(2',3',4',6'-tetra-O-acetyl- β -D-gluco-pyranosyl)-2-thioxopyridine 13

Amorphous solid (139 mg, 65%); t=7 h; [α] -20 (c 0.4); IR ν_{max} 2978, 1753, 1690, 1605, 1439, 1371, 1223, 1098 and 1040 cm⁻¹; ¹H-NMR (500 MHz, CDCl₃): δ 6.60 (d, 1H, $J_{1',2'}=9.6$, H-1'), 6.49 (dd, 1H, H-6), 5.66 (t, 1H, $J_{2',3'}=9.6$, H-2'), 5.42 (t, 1H, $J_{3',4'}=9.6$, H-3'), 5.25 (t, 1H, $J_{4',5'}=9.6$, H-2')

4'), 4.39 (dd, $J_{5',6'a}$ =3.7, $J_{6'a,6'b}$ =12.7, H-6'a), 4.33–4.21 (m, 4H, 2C H_2 CH₃), 4.17 (dd, 1H, $J_{5',6'b}$ =2.0, H-6'b), 3.93 (ddd, 1H, H-5'), 4.03 (dd, 1H, $J_{4a,4b}$ =19.1, $J_{4a,6}$ =1.7, H-4a), 3.75 (dd, 1H, $J_{4b,6}$ =2.2, H-4b), 2.33 (s, 3H, =CCOCH₃), 2.13, 2.08, 2.04, 1.94 (each s, each 3H, 4Ac), 1.30, 1.29 (each t, each 3H, ${}^3J_{H,H}$ =7.1, 2CH₂CH₃) ppm; 13 C-NMR (125.7 MHz, CDCl₃): δ 199.6 (=CCOCH₃), 196.7 (C-2), 170.1, 169.6 (2COCH₃), 169.3 (2C, 2COCH₃), 166.4, 165.8 (2CO₂Et), 152.9 (C-5), 105.1 (C-6), 83.1 (C-1'), 74.8 (C-5'), 72.8 (C-3'), 69.9 (C-3), 67.2 (C-2'), 66.9 (C-4'), 62.8, 62.7 (2CH₂CH₃), 61.1 (C-6'), 36.6 (C-4), 32.1 (=CCOCH₃), 20.4, 20.0 (2COCH₃), 20.3 (2C, 2COCH₃), 13.7, 13.6 (2CH₂CH₃) ppm; FABMS m/z 652 (100, [M+Na]⁺⁺). Anal. calcd for C₂₇H₃₅O₁₄NS: C, 51.50; H, 5.60; N, 2.22; S, 5.09. Found: C, 50.29; H, 5.71; N, 2.64; S, 5.47.

3.6. General procedure for the reaction of 5 with cyanocarbanions

To a stirred solution of 0.26 mmol of ethyl cyanoacetate for 18, phenylthioacetonitrile for 19 and 20, cyanoacetamide for 21, malononitrile for 22, or 4 for 25 and 26 in 0.75 mL of dry DMF at 30°C and under nitrogen, 0.33 mmol of NaH (as a suspension in mineral oil) was added. After 5 min, 5 (0.26 mmol) was dropped, as a solution in 0.75 mL of dry DMF under nitrogen onto the carbanion. The mixture was stirred at 30°C for t_1 min, then 0.26 mmol of phenacyl bromide was added and stirred for t_2 min. The mixture was poured into saturated aqueous NH₄Cl, extracted with ether (except for the case of 21, which was extracted with dichloromethane), washed with water, dried (MgSO₄), filtered and evaporated to dryness.

3.6.1. (E)-Ethyl 2-cyano-3-phenacylthio-3-(2',3',4',6'-tetra-O-acetyl- β -D-glucopyranosylamino) acrylate 18

 t_1 = t_2 =10 min. Column chromatography (ether:hexane=3:1) of the residue gave an amorphous solid (150 mg, 93%); [α] +15 (c 1.0); IR v_{max} 3192, 3063, 2982, 2212, (CN), 1770, 1684 (CO of phenacyl), 1582, 1439, 1370, 1260, 1084 and 1032 cm⁻¹; ¹H-NMR (500 MHz, CDCl₃): δ 10.32 (d, 1H, $J_{NH,1'}$ =7.8, NH), 7.98–7.50 (m, 5H, Ph), 5.59 (dd, 1H, $J_{1',2'}$ =9.4, H-1'), 5.35 (t, 1H, $J_{2',3'}$ = $J_{3',4'}$ =9.4, H-3'), 5.21 (t, 1H, H-2'), 5.09 (t, 1H, $J_{4',5'}$ =9.4, H-4'), 4.96, 4.63 (each d, each 1H, ${}^2J_{H,H}$ =17.1, CH₂COPh), 4.23 (dd, 1H, $J_{5',6'a}$ =4.8, $J_{6'a,6'b}$ =12.4, H-6'a), 4.23 (q, 2H, ${}^3J_{H,H}$ =7.1, CH₂CH₃), 4.08 (dd, 1H, $J_{5',6'b}$ =2.2, H-6'b), 3.85 (ddd, 1H, H-5'), 2.09, 2.06 (each s, each 3H, 2Ac), 2.04 (s, 6H, 2Ac), 1.30 (t, 3H, CH₂CH₃) ppm; 13 C-NMR (125.7 MHz, CDCl₃): δ 191.8 (COPh), 170.5, 169.9, 169.8, 169.7, 169.3, 166.3 (4COCH₃, CO₂Et and C-3), 134.8–128.4 (6C, Ph), 117.3 (CN), 82.8 (C-1'), 81.5 (C-2), 73.3 (C-5'), 72.7 (C-3'), 69.9 (C-2'), 68.1 (C-4'), 61.5 (2C, C-6' and CH₂CH₃), 42.7 (CH₂COPh), 20.6, 20.4 (2COCH₃), 20.5 (2C, 2COCH₃), 14.1 (CH₂CH₃) ppm; FABMS m/z 643 (100, [M+Na]⁺⁺). Anal. calcd for C₂₈H₃₂O₁₂N₂S: C, 54.19; H, 5.20; N, 4.51. Found: C, 54.63; H, 5.79; N, 4.47.

3.6.2. (Z)-3-Phenacylthio-2-phenylthio-3-(2',3',4',6'-tetra-O-acetyl-\beta-D-glucopyranosylamino) acrylonitrile **19** and 3-amino-2-benzoyl-4-phenylthio-5-(2',3',4',6'-tetra-O-acetyl-\beta-D-glucopyranosylamino)thiophene **20**

 $t_1=t_2=30$ min. Column chromatography (ether:hexane=2:1) of the residue gave 19 (56 mg, 33%) and 20 (29 mg, 17%).

19: [α] -4 (c 0.3); IR ν_{max} 3312, 3059, 2953, 2195 (CN), 1746, 1709 (CO of phenacyl), 1549, 1452, 1371, 1227 and 1036 cm⁻¹; ¹H-NMR (500 MHz, CDCl₃): δ 8.04–7.08 (m, 11H, NH and 2Ph), 5.42 (dd, 1H, $J_{NH,1'}$ =8.3, $J_{1',2'}$ =9.4, H-1'), 5.32 (t, 1H, $J_{2',3'}$ = $J_{3',4'}$ =9.4, H-3'), 5.04, 5.00 (each t, each 1H, $J_{4',5'}$ =9.4, H-2', 4'), 4.96, 4.48 (each d, each 1H, ${}^2J_{H,H}$ =16.9, CH₂COPh), 4.22 (dd, 1H, $J_{5',6'a}$ =4.8, $J_{6'a,6'b}$ =12.4, H-6'a), 4.04 (dd, 1H, $J_{5',6'b}$ =2.2, H-6'b), 3.79 (ddd, 1H, H-5'), 2.04, 2.02, 2.01, 1.78 (each s, each 3H, 4Ac) ppm; ¹³C-NMR (125.7 MHz, CDCl₃): δ 192.3 (COPh), 170.7, 170.6, 170.4, 169.7,

169.3 (C-3 and 4COCH₃), 134.8–125.7 (12C, 2Ph), 119.2 (CN), 83.3 (C-1'), 79.2 (C-2), 73.0 (C-5'), 72.4 (C-3'), 69.9 (C-2'), 68.2 (C-4'), 61.5 (C-6'), 42.0 (CH₂COPh), 20.5, 20.4, 20.0, 19.9 (4COCH₃) ppm; FABMS m/z 679 (100, [M+Na]⁺⁺). Anal. calcd for C₃₁H₃₃O₁₀N₂S₂: C, 56.61; H, 5.06; N, 4.26; S, 9.75. Found: C, 56.30; H, 5.02; N, 4.20; S, 9.40.

20: [α] –11 (c 0.7); IR ν_{max} 3322 (NH), 3057, 2918, 2851, 1748, 1460, 1371, 1227 and 1036 cm⁻¹; ¹H-NMR (500 MHz, CDCl₃): δ 7.76–7.06 (m, 10H, 2Ph), 6.54 (d, 1H, $J_{NH,1'}$ =9.5, NH), 5.29 (t, 1H, $J_{2',3'}$ = $J_{3',4'}$ =9.5, H-3'), 5.01 (t, 1H, $J_{4',5'}$ =9.5, H-4'), 4.99 (t, 1H, $J_{1',2'}$ =9.5, H-2'), 4.65 (t, 1H, H-1'), 4.21 (dd, 1H, $J_{5',6'a}$ =5.5, $J_{6'a,6'b}$ =12.4, H-6'a), 4.08 (dd, 1H, $J_{5',6'b}$ =2.3, H-6'b), 3.79 (ddd, 1H, H-5'), 2.02, 2.00, 1.88, 1.68 (each s, each 3H, 4Ac) ppm; ¹³C-NMR (125.7 MHz, CDCl₃): δ 186.1 (*COPh*), 170.8, 170.5, 169.8, 169.4 (4*COCH*₃), 162.7, 157.8 (2C, thiophene ring), 140.1–125.7 (12C, 2Ph), 97.8, 95.1 (2C, thiophene ring), 84.9 (C-1'), 73.1 (C-5'), 72.1 (C-3'), 70.4 (C-2'), 68.3 (C-4'), 61.6 (C-6'), 20.4 (2C, 2CO*CH*₃), 20.3, 19.9 (2CO*CH*₃) ppm; HREIMS m/z obsd 656.1510, calcd for C₃₁H₃₂O₁₀N₂S₂ 656.1498.

3.6.3. 3-Amino-2-benzoyl-4-carbamoyl-5-(2',3',4',6'-tetra-O-acetyl- β -D-glucopyranosylamino) thiophene **21**

 t_1 =15 min, t_2 =30 min. Column chromatography (dichloromethane:methanol=40:1) of the residue gave 21 (71 mg, 46%) as an amorphous solid which had [α] –58 (c 0.7); IR v_{max} 3443 (NH), 3287, 3061, 2951, 1753, 1657, 1466, 1371, 1225 and 1036 cm⁻¹; ¹H-NMR (500 MHz, CDCl₃): δ 8.66 (d, 1H, $J_{NH,1'}$ =9.5, NH), 7.69–7.45 (m, 5H, Ph), 5.75 (s, 2H, NH₂), 5.33 (t, 1H, $J_{2',3'}$ = $J_{3',4'}$ =9.5, H-3'), 5.12 (t, 1H, $J_{1',2'}$ =9.5, H-2'), 5.05 (t, 1H, $J_{4',5'}$ =9.5, H-4'), 4.66 (t, 1H, H-1'), 4.19 (dd, 1H, $J_{5',6'a}$ =5.4, $J_{6'a,6'b}$ =12.4, H-6'a), 4.09 (dd, 1H, $J_{5',6'b}$ =2.2, H-6'b), 3.78 (ddd, 1H, H-5'), 2.07, 2.04, 2.03, 1.87 (each s, each 3H, 4Ac) ppm; ¹³C-NMR (125.7 MHz, CDCl₃): δ 187.1 (COPh), 170.4, 170.2, 169.9, 169.3 (4COCH₃), 164.9, 155.9 (2C, thiophene ring), 141.2–127.2 (6C, Ph), 103.2, 98.8 (2C, thiophene ring), 84.5 (C-1'), 73.2 (C-5'), 72.4 (C-3'), 70.6 (C-2'), 68.2 (C-4'), 61.6 (C-6'), 20.5, 20.3 (2COCH₃), 20.4 (2C, 2COCH₃) ppm; FABMS m/z 614 (100, [M+Na]⁺⁺). Anal. calcd for C₂₆H₂₉O₁₁N₃S: C, 52.79; H, 4.94; N, 7.10; S, 5.42. Found: C, 52.64; H, 5.10; N, 6.96; S, 5.84.

3.6.4. 3-Amino-2-benzoyl-4-cyano-5-(2',3',4',6'-tetra-O-acetyl- β -D-glucopyranosylamino)thiophene 22

 t_1 =15 min, t_2 =10 min. Column chromatography (ether:hexane=6:1) of the residue gave **22** (136 mg, 91%) as an amorphous solid which had [α] -103 (c 0.5); IR ν_{max} 3424 (NH), 3302, 3055, 2951, 2212 (CN), 1753, 1597, 1478, 1371, 1221 and 1040 cm⁻¹; ¹H-NMR (500 MHz, CDCl₃): δ 7.70–7.43 (m, 5H, Ph), 7.10–6.85 (bs, 2H, NH₂), 6.77 (d, 1H, $J_{NH,1}$ =9.5, NH), 5.34 (t, 1H, $J_{2',3'}$ = $J_{3',4'}$ =9.5, H-3'), 5.07 (t, 1H, $J_{4',5'}$ =9.5, H-4'), 5.03 (t, 1H, $J_{1',2'}$ =9.5, H-2'), 4.77 (t, 1H, H-1'), 4.24 (dd, 1H, $J_{5',6'a}$ =5.2, $J_{6'a,6'b}$ =12.5, H-6'a), 4.12 (dd, 1H, $J_{5',6'b}$ =2.1, H-6'b), 3.84 (ddd, 1H, H-5'), 2.11, 2.04, 2.03, 1.91 (each s, each 3H, 4Ac) ppm; ¹³C-NMR (125.7 MHz, CDCl₃): δ 186.5 (COPh), 171.4, 170.4, 169.8, 169.3 (4COCH₃), 164.5, 157.8 (2C, thiophene ring), 140.1–127.1 (6C, Ph), 112.6 (CN), 97.0 (1C, thiophene ring), 84.4 (C-1'), 82.2 (1C, thiophene ring), 73.0 (C-5'), 72.1 (C-3'), 70.9 (C-2'), 67.9 (C-4'), 61.5 (C-6'), 20.6, 20.4 (2COCH₃), 20.5 (2C, 2COCH₃) ppm; FABMS m/z 596 (100, [M+Na]⁺⁺). Anal. calcd for C₂₆H₂₇O₁₀N₃S: C, 54.44; H, 4.74; N, 7.33; S, 5.59. Found: C, 54.04; H, 4.95; N, 7.29.

3.6.5. 3R(S) and 3S(R)-4-Amino-5-benzoyl-3-cyano-2,3-dihydro-3-phenacyl-2-(2',3',4',6'-tetra-O-acetyl- β -D-glucopyranosylimino)thiophene **25** and **26**

 $t_1=t_2=20$ min. Column chromatography (ether:hexane=2:1 and 4:1) of the residue gave 25 (22 mg, 12%) and 26 (40 mg, 22%).

25: [α] -135 (c 0.6); IR ν_{max} 3395 (NH), 3283, 3063, 2955, 2208 (CN), 1751, 1684, 1613, 1481, 1371, 1227 and 1040 cm⁻¹; ¹H-NMR (500 MHz, CDCl₃): δ 8.41 (bs, 2H, NH₂), 8.06–7.26 (m, 10H, 2Ph), 5.32 (t, 1H, $J_{2',3'}=J_{3',4'}=9.5$, H-3'), 5.15 (t, 1H, $J_{1',2'}=9.5$, H-2'), 5.08 (t, 1H, $J_{4',5'}=9.5$, H-4'), 4.88 (d, 1H, H-1'), 4.20 (dd, 1H, $J_{5',6'a}=5.7$, $J_{6'a,6'b}=12.3$, H-6'a), 4.18 (d, 1H, $^2J_{H,H}=18.6$, CHHCOPh), 4.10 (dd, 1H, $J_{5',6'b}=2.2$, H-6'b), 3.88 (d, 1H, CHHCOPh), 3.82 (ddd, 1H, H-5'), 2.04 (s, 6H, 2Ac), 2.03, 1.79 (each s, each 3H, 2Ac) ppm; 13 C-NMR (125.7 MHz, CDCl₃): δ 195.5 (CH₂COPh), 189.3 (COPh), 170.5, 170.1, 170.0, 169.5 (4COCH₃), 165.4, 162.6, 153.5 (3C, thiophene ring), 140.0–127.0 (12C, 2Ph), 115.5 (CN), 97.3 (1C, thiophene ring), 89.2 (C-1'), 74.1 (C-5'), 72.8 (C-3'), 71.2 (C-2'), 68.5 (C-4'), 62.1 (C-6'), 48.5 (CH₂Ph), 20.8, 20.6, 20.5, 20.4 (4COCH₃) ppm; HREIMS m/z obsd 691.1857, calcd for C₃₄H₃₃O₁₁N₃S 691.1836.

26: [α] +89.2 (c 0.7); IR ν_{max} 3368 (NH), 3298, 3059, 2957, 2185 (CN), 1759, 1694, 1620, 1481, 1371, 1229 and 1036 cm⁻¹; ¹H-NMR (500 MHz, CDCl₃): δ 8.36 (bs, 2H, NH₂), 8.04–7.26 (m, 10H, 2Ph), 5.31 (t, 1H, $J_{2',3'}=J_{3',4'}=9.5$, H-3'), 5.20 (t, 1H, $J_{1',2'}=9.5$, H-2'), 5.12 (t, 1H, $J_{4',5'}=9.5$, H-4'), 4.71 (d, 1H, H-1'), 4.25 (dd, 1H, $J_{5',6'a}=5.1$, $J_{6'a,6'b}=12.6$, H-6'a), 4.24 (d, 1H, $^2J_{H,H}=18.4$, CHHCOPh), 4.15 (dd, 1H, $J_{5',6'b}=2.2$, H-6'b), 3.82 (ddd, 1H, H-5'), 3.81 (d, 1H, CHHCOPh), 2.03, 2.01, 2.00, 1.99 (each s, each 3H, 4Ac) ppm; ¹³C-NMR (125.7 MHz, CDCl₃): δ 194.4 (CH₂COPh), 189.0 (COPh), 170.8, 170.2, 169.5, 169.4 (4COCH₃), 166.7, 162.6, 153.6 (3C, thiophene ring), 139.8–126.9 (12C, 2Ph), 115.0 (CN), 95.5 (1C, thiophene ring), 90.5 (C-1'), 73.7 (C-5'), 73.0 (C-3'), 71.7 (C-2'), 68.2 (C-4'), 61.9 (C-6'), 48.1 (CH₂Ph), 20.9, 20.7 (2COCH₃), 20.6 (2C, 2COCH₃) ppm; HREIMS m/z obsd 691.1872, calcd for C₃₄H₃₃O₁₁N₃S 691.1836.

3.7. General deacetylation method

The acetylated product (0.48 mmol) was dissolved in 6 mL of anhydrous methanol at r.t. and 1.0 mmol of NaOMe was added with stirring to the solution. The process was controlled by TLC (ether:hexane=6:1 and dichloromethane:methanol=4:1) until total deacylation of the starting material. After t min, the reaction mixture was neutralized with acid resin Amberlite IR-120(H), filtered and the solvent evaporated under reduced pressure. The following products were prepared in this manner.

3.7.1. Diethyl \(\beta\)-glucopyranosylaminothiocarbonyl malonate 27

t=15 min. In this case, the ratio NaOMe/6, was three times that of the general method. ¹³C-NMR (75.4 MHz, DMSO- d_6): δ 194.3 (CS), 164.9 (2C, 2CO₂Et), 83.6 (C-1'), 79.0 (C-5'), 77.5 (C-3'), 72.4 (C-2'), 69.7 (C-4'), 64.8 (CH), 61.6 (2C, 2CH₂), 60.5 (C-6') ppm; FABMS m/z 404 (100, [M+Na]⁺⁺). HRCIMS m/z obsd 381.1060, calcd for C₁₄H₂₃O₉NS+H 381.1094.

3.7.2. 4-Ethoxycarbonyl-1-(β -D-glucopyranosyl-2-phenyl-5-mercapto-2-pyrrole 28

t=15 min. This compound was not isolated pure. ¹³C-NMR (125.7 MHz, MeOH- d_4): δ 166.6–162.4 (C-5, CO_2Et), 135.4–126.7 (6C, Ph), 122.2 (C-4), 109.2 (C-2), 89.0 (C-1'), 85.4 (C-3), 79.3 (C-5'), 78.9 (C-3'), 74.8 (C-2'), 71.6 (C-4'), 62.7 (C-6'), 61.1 (COCH₂CH₃), 14.8 (COCH₂CH₃) ppm; FABMS m/z 432 (100, [M+Na]⁺). HRDCIMS m/z obsd 410.1292, calcd for $C_{19}H_{23}O_7NS+H$ 410.1273.

3.7.3. 2-Chlorophenyl-4-ethoxycarbonyl-1-(β-D-glucopyranosyl)-5-mercapto-pyrrole **29** t=20 min. ¹³C-NMR (125.7 MHz, MeOH-d₄): δ 166.5, 164.0 (C-5, CO₂Et), 134.2–126.3 (6C, Ph), 122.5 (C-4), 109.2 (C-2), 88.9 (C-1'), 85.4 (C-3), 79.4, 78.9 (C-3', 5'), 74.7 (C-2'), 71.5 (C-4'), 62.6, 61.1 (C-6', COCH₂CH₃), 14.8 (COCH₂CH₃) ppm; FABMS m/z 443 (100, M⁺⁺). HRDCIMS m/z obsd 444.0891, calcd for C₁₉H₂₂O₇NSCl+H 444.0884.

3.7.4. 3-Amino-2-benzoyl-4-ethoxycarbonyl-5-(\beta-D-glucopyranosylamino)thiophene 30

t=10 min. ¹³C-NMR (75.4 MHz, MeOH- d_4): δ 187.5 (COPh), 171.1 (CO₂Et), 166.1, 159.8 (2C, thiophene ring), 142.7–128.1 (6C, Ph), 98.3, 97.0 (2C, thiophene ring), 87.4 (C-1'), 79.4 (C-5'), 78.5 (C-3'), 74.5 (C-2'), 71.1 (C-4'), 62.3 (C-6'), 61.8 (CH₂CH₃), 14.6 (CH₂CH₃) ppm; FABMS m/z 475 (100, [M+Na]⁺⁺). HRDCIMS m/z obsd 453.1340, calcd for C₂₀H₂₃O₈N₂S+H 453.1331.

3.7.5. 3-Amino-2-benzoyl-4-cyano-5-(\beta-D-glucopyranosylamino)thiophene 31

t=15 min. ¹³C-NMR (75.4 MHz, MeOH- d_4): δ 187.4 (COPh), 166.8, 159.6 (2C, thiophene ring), 142.2–128.1 (6C, Ph), 114.1 (CN), 96.9 (1C, thiophene ring), 87.6 (C-1'), 80.6 (1C, thiophene ring), 79.1, 78.7 (C-3', 5'), 73.8 (C-2'), 71.0 (C-4'), 62.3 (C-6') ppm; FABMS m/z 428 (100, [M+Na]+'). HRDCIMS m/z obsd 406.1088, calcd for $C_{18}H_{19}O_6N_3S+H$ 406.1073.

Acknowledgements

We thank the Dirección General de Investigación Científica y Técnica of Spain for financial support (grant number PB 94/1440 C02-01) and the Fundación Cámara of the University of Seville for a grant to José L. Molina.

References

- 1. For a recent review see García Fernández, J. M.; Ortiz Mellet, C. Sulfur Rep. 1996, 19, 61-169.
- Santoyo-González, F.; García Calvo-Flores, F.; Isac-García, J.; Hernández Mateo, F.; García Mendoza, P.; Robles Díaz, R. Tetrahedron 1994, 50, 2877–2894.
- 3. Lindhorst, T. K.; Kieburg, C. Synthesis 1995, 1228-1230.
- 4. Marino, C.; Varela, O.; Lederkremer, R. M. Carbohydr. Res. 1997, 304, 257-260.
- 5. Pradera, M. A.; Molina, J. L.; Fuentes, J. Tetrahedron 1995, 51, 923-934.
- 6. Fuentes, J.; Molina, J. L.; Olano, D.; Pradera, M. A. Tetrahedron: Asymmetry 1996, 7, 203-218.
- 7. Fuentes, J.; Angulo, M.; Molina, J. L.; Pradera, M. A. J. Carbohydr. Chem. 1997, 16, 1457-1477.
- García Fernández, J. M.; Ortiz Mellet, C.; Díaz Pérez, V. M.; Fuentes, J.; Kovacs, J.; Pinter, I. Tetrahedron Lett. 1997, 38, 4161-4164.
- 9. Guenther, W.; Kunz, H. Angew. Chem. Int. Ed. 1990, 29, 1050-1051.
- 10. For a review on nucleosides see Hurin, D. N.; Okabe, M. Chem. Rev. 1992, 92, 1745-1768. For pharmacological activities of the thiophene ring see for instance Xie, M.; Song, W.; Yaoxue Xuebao 1982, 17, 229-232. For wide and classical descriptions see Nucleoside Analogues. Chemistry, Biology, and Medical Applications, NATO Advanced Study Institute Series, Plenum Press: New York, 1979 and Thiophene and its Derivatives, S. Grenowitz, ed.; Wiley-Interscience: New York, 1986.
- 11. Babiano Caballero, R.; Fuentes Mota, J.; Galbis Pérez, J. A. Carbohydr. Res. 1986, 154, 280-288.
- 12. For a second review see Witczak, Z. J. Adv. Carbohydr. Chem. Biochem. 1986, 44, 91-145.
- 13. Ikeda, D.; Horiuchi, F.; Yoshida, M.; Miyasaka, T.; Kondo, S.; Umesawa, H. Carbohydr. Res. 1982, 109, 33-45.
- Lee, M. D.; Dunne, T. S.; Chang, C. C.; Siegel, M. M.; Morton, G. O.; Ellestad, G. A.; McGahren, W. J.; Border, D. B. J. Am. Chem. Soc. 1992, 114, 985-997.
- 15. Wawer, I.; Piekarska-Bartoszewicz, B.; Temeriusz Carbohydr. Res. 1995, 267, 167-176 and references therein.
- 16. Fowler, P.; Bernet, B.; Vasella, A. Helv. Chim. Acta 1996, 79, 269-287.
- Avalos, M.; Babiano, R.; Carretero, M. J.; Cintas, P.; Higes, F. J.; Jiménez, J. L.; Palacios, J. C. Tetrahedron 1998, 54, 615-628.
- 18. Katritzky, A. R. Handbook of Heterocyclic Chem., Pergamon Press: Oxford, 1985; p. 105.
- Shutalev, A. D.; Ignatova, L. A.; Unkovskii, B. V. Khim. Geterotrikl. Soedin 1982, 825-829; Chem. Abstr. 1982, 97, abstract number 163356u. See also Specialist Periodical Reports of The Royal Society of Chemistry, Vol. 16, Part I, N. R. Williams, Senior Reporter; The Royal Society of Chemistry: London, 1984; pp. 107-116.

- 20. Fuentes, J.; Pradera, M. A.; Robina, I. Tetrahedron 1991, 47, 5797-5810.
- 21. Mohareb, R. M.; Aziz, S. I.; Abdel Sayed, N. I.; Shams, H. Z. J. Chin. Chem. Soc. 1992, 39, 181-187.
- 22. Kunz, H.; Sager, W.; Schanzenbach, D.; Decker, M. Liebigs Ann. Chem. 1991, 649-654.
- 23. Cusack, J. D.; Robinson, D. H.; Rugg, P. W.; Shaw, G.; Lofthouse, R. J. Chem. Soc., Perkin Trans. 1 1974, 73-81.
- 24. Fuentes Mota, J.; Pradera Adrián, M. A.; Ortiz Mellet, C.; García Fernández, J. M.; Babiano Caballero, R.; Galbis Pérez, J. A. Carbohydr. Res. 1988, 173, 1-16 and references therein.